
Interpretable Vulnerability Detection Reports

Abstract—Software security faces a persistent gap: static
analysis tools detect vulnerabilities effectively, but their technical
outputs remain inaccessible to most developers. This leads to
mounting security debt, as organizations must rely on security
specialists for remediation, creating bottlenecks that delay fixes.
This paper proposes an interpretability convention and a modular
workflow that transforms raw static analyzer outputs into clear,
actionable vulnerability reports for all developers, not just
security experts. Our tool, SECGen, automates the workflow by
parsing static analyzer outputs and restructuring them into clear,
developer-friendly reports based on our convention, and enforc-
ing compliance through automated validation. We validated our
approach through a user study with 25 developers, comparing
our interpretable reports to other state-of-the-art static analyzer
outputs. The results suggest that developers using interpretable
reports detect, understand and fix vulnerabilities more effectively,
requiring only 67% of the time typically spent with traditional
reports while writing more correct fixes. Key reasons for this
include participants’ preference for structured reports, with clear
vulnerability descriptions and actionable fix suggestions.

Index Terms—interpretable vulnerability reports, static anal-
ysis

I. INTRODUCTION

Increasing numbers of security vulnerabilities produce
mounting security debt, along with pressure on security
teams [1]. To manage this growing risk, organizations often
rely on static application security testing (SAST) tools to
automatically identify source-level vulnerabilities before de-
ployment [1], [2]; such tools are a key component of software
security practices [3], [4].

Ideally, organizations would have enough security experts
to address all static analysis warnings. In reality, general
developers outnumber security specialists by approximately
100 to 1 [5]. So, organizations must either rely on a small
and overburdened group of specialists or require general
developers to handle security alerts. A key issue is that SAST
outputs are highly technical, often complex, and lack action-
able guidance [6], [7], [8]. As a result, most general developers
are unable to interpret or act on these alerts, avoiding security
tasks. This dynamic leaves remediation to a small group of
experts and further compounds security debt [5].

Psychology research shows that comprehensible informa-
tion increases understanding and engagement [9], suggesting
that well-structured vulnerability reports could transform how
developers respond to security findings. Applied to software
security, this suggests that transforming technical vulnerabil-
ity data into accessible, well-structured reports could fun-
damentally change how developers interpret and respond to
security findings. Our key insight is that the structure and
interpretability of vulnerability reports are as important as their
technical content. Making security information actionable and

understandable is critical to closing the gap between detection
and repair, enabling general developers – not just experts – to
participate effectively in remediation processes.

Building on this insight, we propose an interpretability
convention for vulnerability detection reports. This reporting
convention specifies not only what information must appear,
but also how it should be logically organized to guaran-
tee interpretability, actionability, and consistency for general
developers. Unlike prior standards that focus on machine
readability or patch tracking (e.g., OSV Schema1) and existing
guidelines that lack operational enforcement [10], [11], our
work is the first to make interpretability in security reports
practical and enforceable for real-world developer workflows.

We achieve this by introducing a modular workflow – a
general, tool-agnostic process for transforming raw outputs
of any SAST tool into interpretable vulnerability reports that
fully comply with our convention. This workflow consists of:
(1) parsing and extracting key elements from static analyzer
outputs, (2) restructuring these findings according to our
interpretability convention, and (3) automatically checking that
each report meets the convention’s requirements. To enforce
this, we provide explicit validation rules and a linter-based
compliance checker. Finally, we propose SECGen, a tool that
fully automates the entire workflow – from parsing and report
generation to compliance checking – making our convention
practical and immediately usable in real projects.2

We validated the convention through a comprehensive
within-subjects user study involving 25 participants with di-
verse security expertise. Each participant completed struc-
tured surveys and hands-on programming tasks, allowing us
to directly compare the efficiency of developers using our
interpretable reports (generated with SECGen) against those
using reports from other state-of-the-art tools like CodeQL
and AmazonQ. Specifically, we investigated (RQ1) How
interpretable vulnerability reports affect general developers’
ability to understand and resolve vulnerabilities, compared to
traditional reports, and (RQ2) How useful the reports are,
from the developer perspective. To answer these questions, we
employed a mixed-methods approach, analyzing quantitative
and qualitative data gathered from the user study. Our results
suggest that developers using interpretable reports repair vul-
nerabilities 33% faster and produce a higher proportion of cor-
rect patches compared to those using traditional reports from
CodeQL and AmazonQ. Moreover, participants’ qualitative
feedback emphasized that the clear, modular structure of our
reports – which organizes security information into sections –

1https://osv.dev/
2SECGen is available here [12] and will be made open-source after review.
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was critical to their effectiveness, underscoring that structure
and interpretability are as important as technical content.

In summary, our contributions are as follows:

1) An interpretability convention for vulnerability detec-
tion reports, defining a standardized, modular structure
to improve interpretability, consistency, and actionable
guidance for all developers – not just security experts.

2) A practical, tool-agnostic workflow for transforming
raw static analyzer outputs into interpretable vulnerability
reports. This workflow includes automated steps for pars-
ing SAST reports, restructuring information according to
our interpretability convention, and verifying compliance
with the standard. We also provide SECGen as an imple-
mentation of this workflow, automating every stage from
parsing to compliance checking and report generation.

3) We provide empirical evidence from a user study with
25 developers showing that SECGen reports help par-
ticipants repair vulnerabilities in just 67% of the time
required with traditional SAST reports, and write more
correct patches. These improvements hold across different
levels of security experience. Quantitative and qualitative
results further highlight that the clear and layered struc-
ture of reports is relevant to their effectiveness.

Replication Package. All study instruments and SECGen are
available in our repository [12].

II. ILLUSTRATIVE EXAMPLE

Software security debt (i.e., the accumulation of unresolved
security issues) has become a serious concern in modern
applications. Nearly 75% of organizations carry some level
of security debt, with half of them facing highly severe, long-
standing flaws [1]. This persistent gap between vulnerability
detection and effective repair suggests that identifying secu-
rity issues is insufficient: developers must take appropriate
action on these findings. Although recognized as an effective
method for identifying security vulnerabilities [6], previous
work identifies challenges that remain unaddressed in SAST
solutions [13], [10], [14]:

C1: ensuring that warning messages are clear and informative;
C2: providing meaningful support to fix detected issues;
C3: minimizing false positives that burden developers;
C4: incorporating user feedback to refine analysis results;
C5: integrating with development workflows;
C6: designing intuitive user interfaces that facilitate interac-

tion without overwhelming users.

Here, we explain how SASTs fall short in these areas with
a practical example. In Listing 1, generate_pwd returns
a pointer to a stack-allocated buffer pwd ( line 7 ). Since
this array is allocated on the stack ( line 3 ), its memory
becomes invalid once the function finishes execution. So,
when printf dereferences the pointer, the program operates
on invalid memory, resulting in undefined behavior. Such a
mistake may have severe consequences, such as arbitrary code
execution and memory corruption.

1 #define PWD_LEN 16
2 char *generate_pwd() {

3 char pwd[PWD_LEN+1];

4 for(int i = 0; i < PWD_LEN; i++)
5 pwd[i] = ’A’ + rand() % 26;
6 pwd[PWD_LEN] = ’\0’;

7 return pwd;

8 }
9 void main(){

10 char *s = gen();
11 printf("Your password is: \%s\n", s);
12 free(s);
13 }

Listing 1. C code snippet showing an invalid pointer dereference vulnerability.
For brevity, we present a simplified version of Codellama 13b:5773 from
FormAI-v2.

CodeQL3 is a widely used code analysis engine capable of
detecting such issues. We ran CodeQL with its default set of
security rules, and for Listing 1, it produced the results shown
in Figure 1. Its contextual explanation is minimal (C1); it does

May return stack-allocated memory from pwd.

Rule Name cpp/return-stack-allocated-memory
Rule Description A function returns a pointer to a stack-allocated

region of memory. This memory is deallocated
at the end of the function, which may lead the
caller to dereference a dangling pointer.

Level warning
Kind —
Baseline State new
Locations sample.c
Log report.sarif

Locations / Rules:
Rule: cpp/return-stack-alloacted-memory
⚠️ 7  example.c  May return stack-allocated memory from

pwd. 

Info:

Fig. 1. CodeQL output in VS Code’s SARIF Viewer for Listing 1.

not elaborate on the risks of returning a dangling pointer, such
as memory corruption. It identifies the problematic line, but
does not offer fix suggestions (C2). It uses technical language
that increases cognitive load (C6). CodeQL itself lacks a
feedback mechanism (C4); has a high barrier to entry for
novice programmers (C5); and tends to a high false positive
rate, without opportunity for mitigation (C3).

Section III explains how we address these challenges by
focusing on the reporting stage, rather than improving the
efficacy of the SAST tool.

III. VULNERABILITY DETECTION REPORT CONVENTION

Based on key findings from static analysis usability stud-
ies [13], [11], [15], [16], we design our reporting structure
to directly address recurring pain points such as unclear
messages and the lack of actionable fixes. We also emphasize
consistency and structure, as uniform formats help reduce
ambiguity [17] and structured sections allow developers to

3https://codeql.github.com
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tailor the level of detail to the context [11], [16]. Additionally,
we expect that a consistent report layout may help developers
locate and interpret relevant information more quickly as they
become familiar with where specific details are presented.

To ensure precision and consistency, we define a set of
key entities (e.g., vulnerability type, severity, code location,
and other security-relevant terms) that must appear in specific
sections of the report; they are summarized in Table I. For
each section, we specify validation rules indicating which
entities are required and how they should be presented. This
approach guarantees that every part of the report is complete
and standardized. Due to space constraints, we illustrate only
one section’s validation rule; the complete set of rules and
entities is available in our repository [12]. Figure 2 shows an
example of an interpretable vulnerability detection report.

Entity Description and Example
CWE ID Vulnerability type. E.g., CWE-416

SEVERITY Vulnerability severity. E.g., High

SECWORD Words or group of words identified as security relevant
by prior work [18]. E.g., Use After Free

ACTION Fixing a vulnerability implies an action. E.g.,
adding/removing some feature.

TABLE I
LIST OF ENTITIES AND DESCRIPTIONS. OTHER EXAMPLES INCLUDE

TOOLING , LOCATION , CODE , IMPACT .

A. Header

Guideline Describe type of vulnerability ( CWE ID and/or
SECWORD ), severity ( SEVERITY ) and location ( LOCATION ).

Rationale Unclear prioritization in SAST reports hinders ef-
ficient triage and repair [11], [19], [20]. Explicitly including
type and severity addresses these issues by allowing developers
to immediately assess the relevance and impact of a vulnerabil-
ity (C1), streamlining navigation and decision-making within
reports (C6).
Rule Let H be the set of words that make up the report
header and x,y,z words in the header. We evaluate header
compliance with the convention as follows: (∃ x ∈ H :
type(x) ∈ { CWE ID , SECWORD }) ∧ (∃ y ∈ H : type(y) =
SEVERITY ) ∧ (∃ z ∈ H : type(z) = LOCATION )

B. Summary

Guideline Answer four essential security questions: what is
the problem ( CWE ID and/or SECWORD ), where it is located
( LOCATION ), why it is a problem and what are the conse-
quences of leaving it unresolved ( IMPACT and SECWORD ), and
how would an attacker exploit it ( ACTION and SECWORD ).
Rationale Prior studies have shown that static analysis reports
often lack the context developers need to fully understand and
address vulnerabilities [13], [11]. By systematically answering
the “what, where, why, and how” of each vulnerability, we
address the challenge of understandability (C1) through struc-
tured, developer-centered reporting [16]. Moreover, explaining
the consequences and exploitation vectors directly supports

deeper reasoning about code fixes (C2), as emphasized in
recommendations for actionable and context-rich explana-
tions [13], [15]. This section bridges a critical gap identified in
the literature, providing developers with the information they
need for informed and effective repairs.

C. Program Analysis

Guideline Document how data moves through the program.
When sources and sinks are present, illustrate their connec-
tion from untrusted origins to critical operations. Otherwise,
explain the control flow or state transitions that introduce
the vulnerability (e.g. race conditions). In addition, include
information about the environment (i.e., configurations and
assumptions) if available.
Rationale Prior studies have shown that static analysis warn-
ings are often dismissed or misunderstood by developers, es-
pecially when they require awareness of complex states or data
flows not anticipated in the original program design [2]. By
explicitly documenting data and control flows, our reporting
structure improves understandability (C1) and potentially helps
developers accurately assess whether a reported vulnerability
is relevant or a false positive (C3).

D. Fix Suggestion

Guideline Suggest a patch for the vulnerability ( CODE ), along
with a textual explanation of how the suggested modification
addresses the problem ( ACTION and SECWORD or CWE ID ).
Rationale Developers face security challenges due to time
constraints, heavy workloads, and limited security knowl-
edge [6], [13]. While static analysis tools assist in vulnerability
detection, they rarely provide actionable repair suggestions;
this lack of concrete guidance impedes effective remediation
and raises the likelihood of recurring vulnerabilities [13].
At the same time, fully automated patch integration remains
a significant challenge, as code fixes must be both correct
and compatible with project requirements [21]. By pairing
patch suggestions with clear explanations, this section helps
developers adapt patches to their codebase, supporting more
effective vulnerability repair (C2).

E. Methodology

Guideline Enumerate the tools used to generate the report,
including static analyzers and AI mechanisms ( TOOLING ).
Rationale Security experts are often cautious about integrating
tools they do not fully understand – such as large language
models – into the security loop [14]. So, full transparency
is crucial. By enumerating every tool used to generate our
reports, we ensure transparency, reproducibility, and a better
understanding of our approach.

IV. GENERATING INTERPRETABLE REPORTS

To contextualize and validate our interpretability standard,
we introduce a workflow for automatically generating reports
from static analysis tool outputs, as depicted in Figure 3.

Initially, a given code sample is analyzed using a chosen
static analyzer, generating a traditional vulnerability report.
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vuln: Returning Pointer to a Stack-Allocated Memory (CWE-562) in sample.c at line 7 (severity: Moderate)

what: A function returns a pointer to a stack-allocated region of memory. This memory is deallocated at the end of the function, which may lead 
the caller to dereference a dangling pointer..
where: The vulnerability is located in the generate_pwd function at line 7 of the source code.
why: Dereferencing a dangling pointer can lead to undefined behavior, crashes, and potential security vulnerabilities if an attacker can 
manipulate the stack or heap state.
how:  An attacker could exploit this by making the application repeatedly call the generate_pwd function and manipulate the memory, leading 
to a situation where dereferencing this pointer accesses invalid memory, possibly inducing a crash or other unexpected behavior.

code-sources: char pwd[PWD_LEN+1]; This line allocates a fixed-size buffer on the stack for the password.
code-sinks: return pwd; This returns a pointer to a local (stack-allocated) array. Once the function returns, the lifetime of the local array ends, 
making the pointer invalid. Additionally, in the main() function:

printf("Your password is: %s\n", s); uses the returned pointer.
free(s); attempts to deallocate the memory pointed to by s

suggested-fix:       - char pwd[PWD_LEN + 1];       
+    char *pwd = malloc(PWD_LEN + 1);
+    if (pwd == NULL) {                                        
+        fprintf(stderr, "Memory allocation failed\n");
+        exit(1);            
+    }

explanation-suggested-fix: The fix changes the pwd variable from being stack-allocated to heap-allocated using malloc. This ensures that the 
memory remains allocated after the generate_pwd function returns. Error handling for malloc failing is also added to ensure robustness.

method: CodeQL and OpenAI:gpt-4o-2024-08-06

HEADER

SUMMARY

PROGRAM

ANALY
SIS

SUGGESTED 

FIX

METHODOLOGY

Fig. 2. Interpretable vulnerability detection report for example in Listing 1. Section III details each report section.

CODE SAMPLES 

INTERPRETABILITY
CONVENTION

STATIC PROGRAM ANALYSIS

TRADITIONAL 
VULNERABILITY REPORT

REPORT 
GENERATION

VULN:  Returning stack allocated memory
in maxSubArrays function in file.c
(severity: high)

WHAT: (...) returns a pointer to a stack-
allocated region of the memory which is
deallocated at the end of the function. (...)

WHERE: Line 57 of function
maxSubArrays.    (...)

VULNERABILITY REPORT

CUSTOM PARSER

PROGRAM ANALYSIS INFO

LINTER

COMPLIANCE SCORE

LIST OF ISSUES

INTERMEDIATE OUTPUT CUSTOMIZABLE MODULESTOOL OUTPUTSINPUTS FIXED MODULES

Fig. 3. The SECGen workflow follows a modular design: a static analyzer detects vulnerabilities, a parser extracts key details, a text generator produces an
interpretable report, and a linter ensures compliance against our convention.

The effectiveness of this analysis strongly depends on the
quality of the underlying security rules of the analyzer. To
meet our standard, the static analyzer’s rule set ought to be
able to associate identified code patterns with standardized
security labels (e.g., CWE identifiers) and pinpoint the code
location precisely (e.g., start and end line numbers). This
mandatory information enables direct mapping of findings to
known vulnerabilities. Additionally, while information about
vulnerability severity is valuable, its automatic assessment is
inherently challenging due to the dependency on the specific
code context, program logic, and execution environment. Thus,
although severity estimation is not strictly required by our
interpretability standard, static analyzers can enhance their
reports by providing complementary context-independent met-
rics, such as the likelihood or ease of exploiting identified
vulnerability patterns. This also helps prioritize repair efforts.
Finally, note that static analyzers commonly face difficulties
when analyzing nonstandard code constructs, such as macros
or obfuscated code [22]. Although program transformations
can partially alleviate these issues [23], addressing this limita-
tion is outside the scope of the proposed workflow. Once the
static analyzer generates a report containing the mandatory

vulnerability information described above, a custom parser
processes this report, extracting critical vulnerability details
and restructuring them into a standardized intermediate format.

The standardized data and the original code sample are then
fed into a Report Generation module that builds the report
according to our guidelines. LLMs represent a compelling
implementation option for this module due to their dual
strengths in writing reasonable code fixes [24] and producing
clear natural language explanations [25]; this combination
directly addresses the convention requirements for both tech-
nical patches and contextual descriptions. Moreover, LLMs
allow developers to tailor solutions through model selection
and parameter optimization, accommodating varying perfor-
mance requirements, resource limitations, or domain-specific
constraints. However, alternative approaches remain viable,
such as combining human-written descriptions with traditional
program repair techniques [26]. Regardless of the chosen
implementation strategy, the only non-negotiable requirement
is strict adherence to the established reporting convention.

Finally, a linter module evaluates the quality of the gener-
ated report. Using Named Entity Recognition (NER), the linter
ensures that all entities are correctly positioned according to
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our guidelines, enforcing the convention. The overall compli-
ance score is calculated as the percentage of rules satisfied out
of the total number of rules, with scores near 100% indicating
high adherence to the guidelines.

SECGen CLI Prototype We implemented this workflow in a
prototype command-line interface SECGen. We used CodeQL
as the static analyzer due to its robust set of security rules
and strong community support; SECGen operates specifi-
cally on CodeQL’s SARIF reports.4 To generate natural lan-
guage explanations and patch suggestions, we used OpenAI’s
gpt-4o-2024-08-06 model. We also include support for
local Ollama5 models as a cost-free alternative, enabling users
to try SECGen and generate interpretable reports without
relying on commercial APIs. SECGen also evaluates report
compliance using a linter, adapted from SecomLint [18],
that automatically detects deviations from the standard. This
validation tool provides specific actionable feedback, such as
“Header is missing a severity level. ( SEVERITY )”.

V. HUMAN STUDY DESIGN

We evaluated our reporting standard by measuring how it
improves developers’ ability to understand, detect, and repair
security vulnerabilities, using these practical outcomes as
proxies for interpretability, which is inherently subjective [25].
We recruited 25 participants (Section V-A) and designed a
study that included a pre-study survey (Section V-B) to assess
eligibility, followed by a task-based survey that guided partic-
ipants through hands-on programming tasks – each accompa-
nied by its own set of questions – and a set of final questions
(Section V-C). The programming challenges required partici-
pants to fix the detected vulnerabilities, providing a practical
measure of their repair skills. Each participant interacted with
all types of reports, allowing comparisons within the subject
and controlling for individual differences. We then analyzed
responses using a mixed-methods approach (Section V-D).

A. Participants

We recruited participants with varying technical experience,
while ensuring that they had programming experience and
sufficient familiarity with the C language.

1) Sampling strategy: We advertised our study in three
ways: (1) within the university community through personal
contacts, (2) we sent emails to researchers and software devel-
opers working in the field of software security, and (3) posted
on social media hoping to attract participants with industry
experience. To select eligible applicants, we administered an
asynchronous pre-test survey to verify the levels of experience
with C. We considered eligible those applicants who correctly
answered 3 of 5 multiple choice questions; 28 applicants
satisfied these criteria. We sent eligible participants an email to
schedule their study sessions; 3 participants did not respond.
In total, 25 participants took part in the study.

4https://docs.github.com/en/code-security/codeql-cli/
using-the-advanced-functionality-of-the-codeql-cli/sarif-output\
#about-sarif-output

5https://ollama.com/

2) Demographics: 14 participants identified as graduate
students, 2 as post-doc researchers, 2 as industry developers
working in security, 4 as industry developers not working
in security, 1 as undergraduate student, and 2 preferred not
to answer the question. Regarding programming experience,
5 participants reported having between 1 and 5 years of
experience, 17 participants had 6 to 10 years of experience,
and 3 participants had more than 10 years of experience. When
it comes to vulnerability analysis experience, 12 participants
reported no prior experience running or analyzing vulnerability
scans, 6 had less than 1 year of experience, 4 had between
1 and 5 years of experience, and 3 had between 5 and
10 years of experience. Regarding tool usage, 4 participants
reported familiarity with CodeQL; users were not familiar
with AmazonQ. So, based on self-reported experience with
vulnerability analysis processes and tools, we classified partici-
pants regarding their vulnerability knowledge into three levels:
Novices (n = 14) reported zero experience with security

tasks or vulnerability analysis.
Intermediates (n = 7) reported prior exposure to security

or program analysis tools, typically acquired in school
settings (e.g., courses) or personal code experiences.

Experts (n = 4) reported being actively involved in secu-
rity domains, discovering and analyzing vulnerabilities
in industry or research settings. They reported a deep
understanding of security practices.

B. Pre-study survey

We built a 15-minute pre-study survey to assess security
experience and determine eligibility.

1) Design: The survey has an introductory section, fol-
lowed by a demographics block where participants answer
multiple choice questions about their current occupation, years
of programming experience, and familiarity with C (including
self-assessments of their ability to understand and write C
code). Next, the survey features two task-based sections. In
Task 1, participants answer two multiple choice questions
based on C code snippets that assess their code comprehen-
sion, while Task 2 includes three multiple choice items that test
understanding of memory management practices and pointer
usage in C. Finally, we ask participants for follow-up session
date/time options and their email address for contact.

We piloted the pre-study survey with four developers (two
security experts) to refine wording and validate code snippets.

2) Protocol: We implemented an asynchronous protocol
where participants completed the pre-study survey at their con-
venience via Qualtrics. All responses were reviewed; eligible
participants were emailed to schedule the next phase, while
others were notified of exclusion.

C. Study survey and tasks

The study tasks were designed to assess the ability of
participants to identify, understand and address security vul-
nerabilities using different types of vulnerability reports. Each
task presented participants with a code snippet and a report
which required them to analyze the reported issue, assess the

5



SECGen CodeQL AmazonQ

Detect Fix Detect Fix Detect Fix

Sample 1 1/2 1 1 - 0 0
Sample 2 1 1 1 - 1 0
Sample 3 1 1/2 1 - 0 0

Detect column: 1 = correct, 1/2 = partial, 0 incorrect
Patch column : 1 = correct, 1/2 = plausible, 0 = incorrect, - = unprovided

TABLE II
COMPARISON OF THE STUDY TOOLS IN THEIR ABILITY TO DETECT AND

FIX VULNERABILITIES IN THE STUDY SAMPLES. DEFINITION OF CORRECT,
PLAUSIBLE AND INCORRECT PATCHES ARE IN SECTION V-D.

interpretability of the report, and attempt a fix. We estimated
around 20-30 minutes per task and gave 3 tasks per participant.

1) Code samples: We selected samples based on static
analysis and usability requirements. Since SAST tools often
require code to be syntactically correct and complete, we
selected samples from the FormAI-v2 dataset [27], which
has around 331,000 compilable C programs with vulnerability
labels. We selected three vulnerabilities to present to the
participants, to mitigate fatigue while still collecting sufficient
data. Our selection criteria were:

1) Size. Code samples have approximately 100 lines, ensuring
that the task is doable within 20-30 minutes while still
providing meaningful code review challenges [28].

2) Complexity. Samples are of moderate complexity, main-
taining engagement without causing discouragement.

3) Relevancy. All samples feature a subtle yet critical vul-
nerability: dereferencing pointers to deallocated memory.
Unlike more obvious issues like double frees, this vulnera-
bility requires careful analysis to detect, and often precedes
exploitable conditions (see Listing 1) which appear in the
2025 Top 25 Most Dangerous Software Weaknesses.6

The three samples cover diverse programming scenarios,
implementing: string translation (Sample 1), array extraction
(Sample 2), and URL sanitization (Sample 3) - each with
pointer dereference issues. Sample 1 contains two instances
of the same vulnerability; Samples 2 and 3 contain only one.

2) Reports: We based our study on reports from three tools:
SECGen; CodeQL, a widely adopted tool for identifying secu-
rity vulnerabilities [29], [30]; and AmazonQ, a promising AI-
assisted code analysis tool.7 CodeQL detects vulnerabilities
without recommending fixes, AmazonQ goes a step further by
suggesting generic non-code-specific patches. We standardized
all tool outputs by converting them to Markdown, preserving
readability and usability. However, the content and quality of
the report varied, as depicted in Table II.

3) Design: The survey guides participants through a series
of tasks to evaluate the interpretability of three vulnerability
reports; Figure 4 shows the study workflow. First, it asks about
the security tools they have used, the contexts in which they
performed vulnerability analysis (e.g., bug bounty programs,

6https://cwe.mitre.org/top25/
7https://docs.aws.amazon.com/codeguru/detector-library/

MAIN STUDY

DEMOGRAPHIC
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TASK INSTRUCTIONTASK INSTRUCTION

TASK INSTRUCTIONTASK INSTRUCTIONREPORT + CODE

CODING ENVIRONMENT

Fig. 4. Participants joined a live Zoom session, completed the survey, and,
during coding tasks, used a pre-set coding environment to consult code
samples and reports.

school courses, testing) and their overall experience with
vulnerability scanning and reporting.

The survey then presents the study tasks. Participants an-
swer multiple-choice questions about the reported vulnerabil-
ity. Next, they evaluate report components using Likert scales
(ranging from Strongly Disagree to Strongly Agree). Finally,
participants are asked to create a fix for the vulnerability. All
participants work with the same code samples and interact
with all three types of report. Although the order of the code
samples is fixed, the presentation order of the reports varies,
following a counterbalancing scheme [31] to systematically
vary report order. This evenly distributes, and thus controls for,
order effects. Finally, participants answered questions designed
to uncover what makes a report more interpretable, including
open responses, and an evaluation of specific properties.

We piloted the main study with six additional developers
(two security experts). One identified an unlabeled vulnerabil-
ity in one code snippet, which we corrected post-pilot.

4) Protocol: The study was conducted in individual 90
minute sessions via Zoom. Each session began with partic-
ipants consenting, and accessing the Qualtrics survey. We
instructed participants to complete all tasks independently
without consulting external resources. Participants were given
access to a controlled web-based development environment
through GitHub Codespaces to ensure a consistent and real-
istic setup without the need for local installations [32]. We
asked participants to share their screens to maintain unifor-
mity. To respect privacy, no video, audio, or screen activity
was recorded; instead, we captured insights through open-
ended survey responses and interviewer notes. All participants
worked sequentially through the three tasks. Finally, we pro-
vided a $20 USD Amazon gift card as compensation. The
study was approved by our institutions’ relevant review boards.

D. Data Collection and Analysis

For each task, we measured:
• Vulnerability understanding: (discrete non-negative vari-

able) The number of survey questions about a vulnerability
that participants correctly answered.

• Report utility (discrete non-negative variable) The number
of survey questions about a vulnerability that participants
correctly answered based on the information from the report.

• Patch correctness: (categorical variable) We categorized
user-generated patches as correct, incorrect, or
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plausible. We wrote unit tests (with 95% branch cov-
erage) to evaluate functional correctness and method signa-
tures. We manually reviewed patches and used the ESBMC
formal verification module8 to check for flaws. A patch is:
– Correct if it preserves the program’s behavior (i.e., it

passes all tests), does not change method signatures, and
resolves the vulnerability (without introducing new ones).

– Plausible if it resolves the vulnerability (without
introducing new ones) but changes behavior or signatures

– Incorrect if it does not resolve the vulnerability and
causes the program to fail tests, or changes signatures.

• Patching time: (continuous variable) The amount of time
elapsed from the participant opening the page containing the
vulnerability repair question to advancing to the next page.
At the end of the tasks, we also collected written feedback

through closed- and open-ended responses to further assess
the perceived utility of the report. To analyze the collected
data, we used regression models to answer RQ1 and RQ2,
ensuring control for participant differences and task vari-
ation. We compared the impact of using SECGen reports
versus others by estimating regression models for the outcome
variables: vulnerability detection and understanding, patching
time, patch correctness and report utility. Specifically:
• For vulnerability understanding and report utility (count

variables), we used a Poisson mixed-effects model since
there are no signs of overdispersion in the data.

• For patching time (continuous variable), we used a linear
mixed-effects model.

• For patch correctness (categorical variable), we used multi-
nomial logistic regression.
In these models, the main predictors are the type of report

and the differences between code samples. To control for
individual differences in security experience, we incorporated
participants’ self-reported data. Given the within-subjects de-
sign, where each participant evaluated all conditions, we also
included random effects to account for individual variability.

We also conducted a qualitative analysis for RQ2 to capture
richer insights into participant perceptions and the nuanced
factors influencing report utility. Concretely, we (1) performed
a thematic content analysis of the open-ended responses of
the participants, using an inductive coding approach [33] to
identify emerging themes across the levels of expertise. We
compared them to the structured responses., and (2) built a heat
map to visualize participants’ property relevance preferences,
stratified by security expertise levels.

VI. RESULTS

This section summarizes the results of our study.

A. RQ1. Effects of interpretable vulnerability reports on vul-
nerability detection and repair

1) Effects on vulnerability understanding: To assess
whether SECGen reports improve vulnerability understanding
by developers, we use a regression model. Consider Table III,

8https://github.com/esbmc/esbmc

column “Vulnerability understanding” shows the results. De-
velopers using SECGen reports correctly identify and locate
statistically significantly more vulnerabilities (0.6554 more,
p < 0.01) than those using AmazonQ reports. There are no
statistically significant differences from the CodeQL reports,
as expected, since SECGen uses CodeQL as the underlying
static analyzer. Similarly, vulnerability analysis experience
and sample type do not show statistically significant effects
on vulnerability understanding. Interestingly, developers who
reviewed both SECGen and CodeQL reports more effectively
identified the false positives in AmazonQ’s output for Samples
1 and 3 (Table II). Four novice developers identified these
issues after examining the SECGen and CodeQL reports,
whereas only intermediate or expert participants detected the
problem in Sample 1’s AmazonQ report. These findings may
reflect the benefits of our report structure; more data is needed
to confirm causality.

Finding. SECGen reports significantly improve developers’
ability to detect and understand vulnerabilities compared to
AmazonQ, with CodeQL showing similar performance to
SECGen. Moreover, developers who reviewed SECGen and
CodeQL reports were better at detecting false positives in
AmazonQ’s output, with even novice participants successfully
identifying errors. Although the improvement seems related to
the convention, we need more data to confirm causality.

2) Effects on patching time: Next, we evaluate whether the
use of SECGen reports affects the time it takes developers
to patch vulnerabilities. Table III (column “Time”) presents
the coefficients, standard errors (in parentheses), and p-values.
We focused only on correct patches, since some participants
skipped the task after failing to resolve the vulnerability, and
this distorts timing results. For the reference group (“Using
SECGen + Sample 1”), average patching time is 211.36
seconds, but this estimate is not statistically significant. In con-
trast, developers who use CodeQL reports take significantly
longer (an additional 104 sec, p < 0.001) than those using
SECGen reports. This increase is likely due to the lack of
patch suggestions in CodeQL reports, which forces developers
to spend additional time determining an appropriate fix (as
supported by participant feedback discussed in Section VI-B).
No user was able to correctly patch vulnerabilities with
AmazonQ. Sample 2 is related to a statistically significant
reduction in patching time (reduction of 316 sec, p < 0.001).
Samples 1 and 2 require similar fixes, which suggests that
learning effects may influence Sample 2 fix time. On the
other hand, Sample 3 significantly increases the patching time
(additional 59 sec, p < 0.001). Our analysis shows that neither
vulnerability experience nor programming experience signifi-
cantly influences patching time. This suggests that within this
group of developers, experience levels do not lead to notable
differences in how quickly they patch vulnerabilities.

Finding. Developers fix vulnerabilities faster using SECGen
reports rather than CodeQL, requiring only 67% of the time.

3) Effects on patch correctness: To investigate whether
SECGen reports contribute to better repair skills, we built
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Vulnerability
Understanding

Patching
Time

Patch Correctness
Report
UtilityIncorrect

vs. Correct
Plausible

vs. Correct

SECGen + Sample 1 0.835 (0.328) * 211.357 (275.38) -0.90 (1.47) 1.36 (1.34) 1.460 (0.315) ***
AmazonQ -0.655 (0.245) ** - 17.80 (0.56) *** 15.11 (0.56) *** -0.322 (0.193) .
CodeQL 0.142 (0.198) 104.991 (0.401) *** 1.64 (0.84) ** -1.44 (0.98) 0.054 (0.171)
Experience -0.137 (0.092) -111.406 (68.335) -0.29 (0.35) -0.89 (0.43) ** -0.095 (0.065)
Sample 2 -0.091 (0.219) -316.250 (0.696) *** 0.73 (0.96) -13.77 (188.37) -0.080 (0.191)
Sample 3 0.164 (0.214) 59.523 (0.806) *** -1.05 (1.10) 1.22 (1.02) 0.054 (0.175)

Shaded row is baseline. Note: . p <0.1; * p <0.05; ** p <0.01; *** p <0.001
TABLE III

SUMMARY OF REGRESSION RESULTS FOR FOUR OUTCOMES: “VULNERABILITY UNDERSTANDING,” “PATCHING TIME”, “PATCH CORRECTNESS”, AND
“REPORT UTILITY”. EACH ROW SHOWS A PREDICTOR (E.G., REPORT TYPE, VULNERABILITY ANALYSIS EXPERIENCE), ITS REGRESSION COEFFICIENT,
AND STANDARD ERROR IN PARENTHESES. THE BASELINE ROW REPRESENTS THE REFERENCE VALUES WHEN OTHER PREDICTORS ARE AT REFERENCE

VALUES (I.E., 0/FALSE). ASTERISKS MARK STATISTICALLY SIGNIFICANT EFFECTS (P-VALUES), SHOWING RELEVANT PREDICTORS.

a multinomial logistic regression model, shown in Table III
(column “Patching correctness”). Correct patches serves
as the reference category, so all coefficients reported below
indicate their effect on the log-odds of producing incorrect
or plausible patches relative to correct (i.e. columns
Incorrect vs. Correct and Plausible vs Correct, respectively).
Once again, Table III shows coefficients, standard errors (in
parentheses), and p-values (obtained with Wald tests, as is
common practice for multinomial logistic regressions [34]).

Results indicate that AmazonQ reports significantly increase
the likelihood of producing incorrect patches (more 17.80,
p < 0.001) and plausible patches (more 15.11, p < 0.001)
compared to correct patches. AmazonQ’s responses lack
context-specific guidance; this may be leading the develop-
ers to introduce patches that appear reasonable but fail to
fully resolve the vulnerability. Furthermore, the high rate of
incorrect and plausible patches associated with AmazonQ
suggests that developers may be engaging in trial-and-error,
applying fixes that appear plausible without a deep under-
standing. In contrast, SECGen reports offer more structured
and context-aware guidance, which may be supportive of the
more accurate solutions.
CodeQL reports show a weakly significant effect on in-

creasing the likelihood of plausible patches (more 1.64,
p < 0.05) but do not significantly impact the likelihood of
incorrect patches. This suggests that CodeQL reports help
developers get closer to the correct solution but do not provide
enough actionable information to help programmers reach
successful repairs. One reason for this is that CodeQL do
not explicitly suggest how to fix vulnerabilities, causing de-
velopers to implement partial or suboptimal solutions with the
knowledge they have. We also find that the vulnerability analy-
sis experience negatively impacts the likelihood of producing
plausible patches (less 0.89, p < 0.05), suggesting that
more experienced participants are less likely to submit patches
classified as plausible instead of correct. Programming
experience does not have a significant effect.

Finding. AmazonQ significantly increases the likelihood of
developers writing incorrect and plausible patches,

indicating that its automated guidance may be misleading or
incomplete. CodeQL reports increase plausible patches
but do not significantly impact incorrect patches, suggest-
ing that they help developers get closer to the right fix, but
often leave gaps. In contrast, SECGen reports appear to be
more effective in guiding developers toward fully correct
patches, likely due to their structured and context-aware rec-
ommendations.

RQ1. Interpretable vulnerability reports generated with SECGen
significantly enhance developers’ ability to detect and understand
vulnerabilities. Their structured, context-aware recommendations
not only enable faster and more accurate patching but also help
developers identify false positives in subsequent reviews.

B. RQ2. Perceived utility of interpretable vulnerability reports

We estimated report utility using a Poisson mixed-effects
model. To better understand the results, we analyzed
open-ended and dichotomous responses (i.e., ”improves
comprehension”/”does not improve comprehension”). Open-
ended responses captured spontaneous opinions, while
structured formats encouraged consideration of specific
benefits that participants may have not otherwise considered.

Table III (column “Report utility”) shows the coefficients,
standard errors (in parentheses), and relevant p-values. The
baseline – SECGen reports and Sample 1 – has an estimated
utility score of 1.460 (p < 0.001). Compared to this baseline,
AmazonQ reports are perceived as less useful (less 0.322,
p < 0.1). CodeQL reports do not differ significantly from
those of SECGen in terms of utility.

Structured responses. To better understand these differences,
we presented participants with “it helps”/“it doesn’t help”
(dichotomous) questions about which report properties helped
them understand the vulnerabilities. Figure 5 summarizes the
responses; “NL Explanations” refers to vulnerability and patch
explanations using natural language. Novices consistently
placed the highest value on elements that offered straight-
forward guidance and actionability – vulnerability location,
patch suggestions, and natural language explanations. Their
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Fig. 5. Participants’ preferences for report properties, stratified by security
expertise levels.

comparatively low rating for severity and CWE indicates a
preference for direct, immediate instructions over risk metrics
or abstract classifications. Intermediate developers showed a
more balanced pattern, generally rating location, patch sugges-
tions, severity, and explanations highly (all above 80%), but
still giving CWEs relatively low importance (29%). Finally,
Experts prioritized vulnerability location, patch suggestions,
explanations, and severity (all at 100%). Interestingly, they
were also more receptive to CWE descriptions (50%) than
other participants, possibly because they can integrate this
information into their existing knowledge or workflow.

Open-ended responses. By far, the three themes appearing
most often are the explicit location of the vulnerability in
the code, a clear explanation of why/how it is a problem,
and a suggested code fix. Concretely, one participant noted
that a good report should “(...) clearly identify the offending
lines of code, why they are vulnerable, and possible fixes.” In
addition, while including patches was generally appreciated,
respondents cautioned against blindly applying them. As one
participant stated, “Patches are often helpful, but I would not
blindly apply them myself.” This indicates that developers
value understanding the rationale behind a suggested fix, rather
than relying solely on automated recommendations.

Several participants also highlighted the importance of
report structure. . For instance, P5 wrote reports should “be
easy to navigate,” P23 appreciated “the context [being] broken
down into bullet points. . . so that I do not have to dig through
information,” and P24 emphasized the need for reports to be
“divided in clear sections to make it easy to skim (for busy
programmers).” This feedback shows that added information –
like explanations or fix suggestions – only benefits developers
when it is clearly organized and easy to find. Consistent with
previous work [16], [11], [13], [15], our findings suggest that
richer content is only useful when paired with clear structure;
simply adding information is not enough. This is why our
interpretability convention is relevant – it ensures all key
properties are not just present but also logically organized.

Regarding technical details, such as severity ratings and
CWE indications, they were not universally valued. One
comment remarked, “(...) this type of data is not so important
for development phases” while another observed, “(...) using

technical nomenclature by itself is not transparent at all and
puts the onus of searching for the actual explanation on the
programmer.” These responses suggest that developers may
not find technical jargon and abstract metrics as useful as
immediately actionable insights.

RQ2. Our interpretable reports are perceived as more useful than
others because they provide clear vulnerability locations, concrete
explanations, and actionable patch guidance – all presented in an
organized structure. In contrast, technical jargon, severity metrics,
and CWE classifications are valued less, especially by nonexperts.

C. Threats to Validity

With respect to construct validity, first, we measured secu-
rity experience using self-reported data, which may be prone to
over- or under-estimation biases. We mitigated this risk with a
pre-study survey validating participants’ baseline knowledge
of C, including multiple-choice security-related questions.
Second, acquiescence bias is the tendency for participants to
agree with statements regardless of their true beliefs, which
can distort results. To mitigate this, we followed survey best
practices: using neutral wording, avoiding check-all-that-apply
formats, and including both positive and negative options [35].
All vulnerability reports were also pre-generated and presented
in a randomized, anonymized order so users did not know
which tool produced each report.

Learning effects represent a threat to internal validity; we
mitigated this by using a counterbalancing schema [31] that
randomized the order of the conditions.

Regarding external validity, we selected code samples of
tractable complexity given our time constraints. Despite this,
these samples still reflect real-world vulnerabilities and mirror
normal code distribution in real projects [36]. Additionally,
we standardized all vulnerability reports in markdown for-
mat. While this preserved structure and key information,
the reduced interactivity and uniform presentation may have
influenced participants’ responses. To mitigate these issues, we
piloted the markdown format to ensure clarity and randomized
and anonymized the report presentation during user studies.

The same considerations apply to the tools used to generate
the reports: for our study, SECGen reports were generated
using gpt-4o-2024-08 and CodeQL, while comparison
reports were produced using CodeQL and AmazonQ. Alter-
native tools, models, or configurations (such as manual report
writing or traditional repair techniques) might yield different
results. We partially mitigate this by including a linter to
enforce consistency and ensure a standard quality level.

Finally, our study reflects typical development teams, where
general developers far outnumber security specialists [5], but
included only four experts. Future work should involve more
security specialists to identify expert-specific challenges.

VII. DISCUSSION & OPPORTUNITIES

Integrating Interpretable Vulnerability Reporting into De-
velopment Workflows. Developers need varying levels of de-
tail depending on context, preferring concise warnings in some
settings and more detailed explanations elsewhere [16]. Our
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convention embodies this principle by structuring vulnerability
reports into modular, layered sections, allowing developers
to access the right information when needed. For example,
concise summaries can be shown during code review, with
full explanations and fix guidance available as needed.
Our workflow vs intelligent code assistants. Intelligent
code assistants, such as AmazonQ and Copilot[37], allow
developers to ask for vulnerability explanations or fixes, but
their usefulness is often limited by the need for effective
prompting – a process that can be time-consuming and partic-
ularly challenging for non-experts who may not know which
questions to ask. In contrast, our workflow automatically
produces comprehensive, structured reports that present all
relevant details by default, eliminating the need for manual
prompting.
Some vulnerabilities may be harder to explain than others.
Some vulnerabilities are inherently more complex than others.
For instance, vulnerabilities that span multiple files or involve
complex data dependencies may require additional context or
specialized expertise to fully understand their impact. Our
study did not systematically assess how report effectiveness
varies with vulnerability complexity, nor did we analyze which
types of vulnerabilities are most challenging for developers to
comprehend. Future work should investigate these dimensions
to identify where structured reporting conventions are most
and least effective, and how to further support developers
facing particularly complex cases.

VIII. RELATED WORK

Vulnerability Reporting Standards Prioritize Automation
Over Developer Guidance. Industry initiatives like Google’s
“Know, Prevent, and Fix” framework [38] and the OSV
Schema focus on structured metadata, automation and risk
management for supply chain security. These standards excel
at enabling machine readability and future-oriented tracking,
but do not directly support developers in understanding and
fixing vulnerabilities as they encounter them. In contrast,
we transform technical analysis outputs into clear, actionable
reports to help developers comprehend and remediate issues
right away. SECOM [39] advances vulnerability communi-
cation through a structured convention for security commit
messages, primarily aimed at improving vulnerability tracking
via patch documentation. Our work adapts and extends the
principles SECOM to the context of vulnerability detection
reports. We also added a compliance layer – inspired by Reis
et al. [18] – to ensure reports are consistenta and complete.
Usability Barriers in Static Analysis Limit Developer
Adoption. Prior research has widely established that the
practical adoption of static analysis tools is hindered by poor
usability and lack of actionable communication. Multiple stud-
ies [13], [11], [15], [16] consistently highlight recurring bar-
riers (e.g., unclear warning messages, insufficient fix support,
workflow disruption, and generic or overwhelming reporting)
and recommend guidelines for addressing them (e.g., devel-
opers must benefit from context-sensitive information, avoid
overwhelming developers with too many warnings at once).

However, none of these works proposes solutions directly
applicable in development workflows. Other approaches [40],
[41], [42] have improved the usability of static analyzers by
reducing false positives or refining bug localization. But none
of these efforts address how the outputs of static analysis
tools are presented. In contrast, instead of improving the
tools themselves, we focus on their outputs and introduce a
structured reporting convention and offer a practical, ready-
to-use solution for report generation that is agnostic to the
underlying static analyzer.
LLMs Enhance Detection, Not Actionable Reporting. Re-
cent work explores distinct ways to use LLMs for security.
Concretely, some use LLMs to augment static analyzers by
improving contextual reasoning, reducing false positives, or
helping to understand and repair code [43], [44], [45], [46],
[47]. Others focus in making vulnerability detection reports
more actionable. Flynn and Klieber [19] used LLMs to au-
tomate alert triage by generating structured explanations for
security experts, while Mao et al. [20] leveraged LLMs to
improve vulnerability detection and generate detailed expla-
nations for developers. Both differ from our approach: the
first targets expert triage in large-scale settings, and the latter
is tightly coupled to LLM-based detection and prompting.
In contrast, our method is tool- and model-agnostic, auto-
matically producing standardized actionable reports from any
detection system without human-in-the-loop reviews or cus-
tom model integration. Our explicit compliance layer ensures
automated validation of completeness and consistency. Most
importantly, our reports are designed for immediate use by
developers, enabling them to promptly understand and address
vulnerabilities as they arise.

IX. CONCLUSION

Despite significant advances in static analysis for vulnerabil-
ity detection, persistent usability challenges continue to limit
the practical impact of these tools, resulting in heavy reliance
on security specialists and growing security debt. Existing
solutions focus on automation and machine readability, but
lack actionable reporting for general developers. To address
these limitations, we proposed: (1) a structured interpretability
convention for clear and actionable vulnerability reports; (2) a
modular workflow, implemented in SECGen, that standardizes
the generation of interpretable reports; and (3) an empirical
evaluation with 25 participants, assessing the effectiveness
and utility of our approach. We found that our interpretable
vulnerability reports improved the speed and accuracy of the
repair: code fixes were completed in 67% of the time required
when using traditional reports, and participants produced more
correct patches than incorrect or plausible ones. While further
validation is needed, our results provide initial evidence that
structured, human-centered reporting can help address persis-
tent usability challenges in vulnerability management.
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