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ABSTRACT
Automatic vulnerability detection is of paramount importance to
promote the security of an application and should be exercised at the
earliest stages within the software development life cycle (SDLC)
to reduce the risk of exposure. Despite the advancements with
state-of-the-art deep learning techniques in software vulnerability
detection, the development environments are not yet leveraging
their performance. In this work, we integrate the Transformers ar-
chitecture, one of the main highlights of advances in deep learning
for Natural Language Processing, within a developer-friendly tool
for code security. We introduce VDet for Java, a transformer-based
VS Code extension that enables one to discover vulnerabilities in
Java files. Our preliminary model evaluation presents an accuracy
of 98.9% for multi-label classification and can detect up to 21 vul-
nerability types. The demonstration of our tool can be found at
https://youtu.be/OjiUBQ6TdqE, and source code and datasets are
available at https://github.com/TQRG/VDET-for-Java.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Computing methodologies→Machine learning.
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1 INTRODUCTION
With the constant digitalization of our society, software usage is
increasing daily. Similarly, vulnerabilities, defined as flaws that at-
tackers can exploit [14], are also growing. Besides their cost and
bad reputation, these tend to have a long vulnerability life cycle [1]
and a disclosure time window of 312 days on average [2]. It is in the
companies’ best interests to ensure their software is free of flaws
as soon as possible to reduce the risk of attack. Consequently, com-
panies follow the shift-left principle [7] where a task traditionally
done at a later stage of the process moves to an earlier phase of
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SDLC. Usually, security only concerns security auditors, who have
the expertise to configure and use security tools, such as static and
dynamic code analyzers, at a later stage of a project on deployed
software [17]. This approach, along with the traditional techniques,
does not suit the shift left principle due to the required expertise
and considerable gap between software development and security.

Recent advancements with Deep learning (DL) in vulnerabil-
ity detection [3] are appealing for merging security within the
development as it eliminates the need for expert knowledge to
configure and execute security tools. By changing the paradigm
from rule-based program analysis tools to lightweight and efficient
learning-based scanners integrated into development environments,
developers can focus on quality from the start rather than waiting
for errors to be discovered late in the SDLC. Hence, considering
the progress with state-of-the-art DL techniques, namely the trans-
former model [18], and the lack of developer-friendly tools in this
area, we introduce a proof-of-concept for vulnerability detection
within the developer workflow to promote the early finding of soft-
ware flaws. To this end, we propose a transformer-based VS Code
extension to discover vulnerabilities in Java files.

Our contributions. This paper introduces a proof-of-concept
for the aforesaid tool. We highlight the following three contribu-
tions:

• a transformer-based VS Code extension capable of iden-
tifying up to 21 CWEs and potential vulnerable code in Java
projects, dubbed VDet for Java

• a multi-label classification model for vulnerability detec-
tion, with an accuracy of 98,9%.

• a fine-grained dataset with vulnerable and non-vulnerable
Java methods and one-hot encoded labels for vulnerability
detection.

Paper organization. This paper is structured as follows: Sec-
tion 2 presents the background and related works on software
vulnerability detection using transformers and other deep learning
architectures. Section 3 introduces VDet for Java, outlining the
main phases of its development. Section 4 concludes the paper,
highlighting challenges and future steps.

2 BACKGROUND
The 2022 Open Source Security and Risk Analysis Report 1 iden-
tifies a slight decrease in the number of vulnerabilities found in
projects, demonstrating that companies are investing in addressing
software flaws. Although this process is usually reactive and orga-
nizations tend to wait for actual exploits to patch their software,
there is a tendency towards a more proactive strategy. Developers
increasingly follow the shift-left principle, focusing on quality from
the start rather than waiting for late discovery of errors [21].

1https://www.synopsys.com/software-integrity/resources/analyst-reports/open-
source-security-risk-analysis.html
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Hence, recent work explores DL-based systems for vulnerability
detection to reduce the hurdles of analysis for developers and secu-
rity experts associated with traditional techniques and anticipate
the detection as much as possible. VulDeePecker [13], SySeVR [12]
and 𝜇VulDeePecker [25] are examples of that. They rely mostly on
Recurrent Neural Networks and (Bidirectional) Long Short-Term
Memory neural networks. Despite having made significant progress
in automation and accuracy, some problems still hinder these ap-
proaches. Managing longer sequences effectively, defining a suitable
code entity that abstracts data without compromising relevant code
characteristics, and the vocabulary explosion problem are some
challenges of current solutions [11]. The transformer is a recent
model that helps address these issues, and it has already been used
for vulnerability detection, achieving state-of-the-art results, and
proving the potential of the architecture [24]. It has a sequence-
to-sequence architecture with an encoder-decoder structure and
attention mechanisms. They rely entirely on self-attention to es-
tablish dependencies between inputs and outputs, allowing much
of the computation to be performed in parallel.

Available tools: Few of these DL systems have found adoption by
the software industry, with most tools still rule-based systems: Xie
et al. [23] developed a plugin for Eclipse and Java that addresses
common web application vulnerabilities dubbed ASIDE, and it also
reminds programmers of safe programming practices within IDEs.
Whitney et al. [20] upgraded ASIDE to promote a learning oppor-
tunity in the context of writing code. White et al. [19] designed an
extension for Eclipse that identifies the violation of CERT rules in
Java. Smith et al. [15] presented an innovative tool that not only
detects vulnerabilities but also helps developers to solve them. Most
of the proposed security solutions for developers are too confusing
to use due to common issues. These include poorly presented out-
puts, a lack of actionable solutions for detected vulnerabilities, and
too much noise between the alerts and what is relevant [9, 15].

3 VDET FOR JAVA
We coin our proof-of-concept as VDet for Java, a VS Code extension
for vulnerability detection in Java source code, based on the trans-
former architecture. We focus on the Java programming language,
as it is among the most investigated [4]. Our proof-of-concept fol-
lows the typical pipeline for vulnerability detection, including data
gathering, pre-processing, learning, and evaluation [16]. For data-
gathering, we collect, filter, and label the data. In the pre-processing,
we transform the dataset into a suitable format for the model by
tokenizing and encoding each code entity. Then, we fine-tune and
evaluate JavaBert [5], a BERT-based model that uses only the en-
coder stack of the transformer for multi-label classification. Finally,
we load the model into a server and establish communication with
the extension to obtain the vulnerability identifications in code
samples. This process is summarized in Figure 1.

3.1 Dataset: data extraction and preprocessing
As far as we know, there are no standardized datasets for machine
learning-based vulnerability detection for the Java programming
language. We build our dataset from one of the few available re-
sources, the Juliet Test Suite for Java 2 from the NIST Software
2https://samate.nist.gov/SRD/testsuite.php

Table 1: Overview of our dataset, through the different filter-
ing phases.

Original After NSDR After LSR
# of samples 145 672 134 645 115 600
# non vulnerable samples 99 542 92 747 92 445
# vulnerable samples 46 130 41 898 23 155
# CWEs 111 21 21

Assurance Reference Dataset Project (SARD). The Test Suite con-
tains 28,881 files written in Java with examples of both vulnerable
and non-vulnerable code. Each file is a test case labeled with a
particular CWE tag corresponding to the security vulnerability of
the associated program code and contains one or more methods.

Granularity: When training on program code, granularity usu-
ally ranges from statement level (i.e. fine granularity) to file level
(i.e. coarse granularity) [16]. In a coarser granularity, there is more
information that can be irrelevant and incorrectly represent the
vulnerability. And would eventually require the need for expert
knowledge to pinpoint the vulnerable code [10]. On the other hand,
a finer granularity can filter out unnecessary information, promot-
ing a focused detection and possible localization of the flaw [10, 13].
We use method-level granularity, as it comprises enough informa-
tion to identify all CWEs present in the original Test Suite and still
allows pinpointing vulnerabilities.

We constructed a parser that extracts the methods from the
original files, normalizes them, and stores each of them into a new
file. Words with “good” and “bad” prefixes/suffixes are removed
from the original files so that the deep learning model would not
rely on this to classify code. Similarly, the original method name
is replaced with an abstract name (e.g., "method"), and comments
are erased because they do not introduce vulnerabilities. Table 1
illustrates the evolution of the data set in size during the filtering
phases explained below.

Non-significant data removal (NSDR): The distribution of samples
per CWE in our dataset is not balanced. We remove CWEs that
do not have enough samples for training to avoid compromising
the learning process. For this, we calculate the mean samples per
CWEs (i.e. threshold = 1312), defining it as the minimum number
of required samples and filtering the dataset. Only 21 CWEs 3 are
kept, reducing the total number of samples for training to 134,645.

Longer sequences removal for training purposes (LSR): BERT ar-
chitectures consume up to 512 numerical tokens [6], so longer
sequences should be encoded and either truncated or split into
chunks before being fed to the model. The latter option is not ap-
propriate when training a model for vulnerability identification.
Since each chunk is treated independently, dividing the code into
sections and assigning the same label to all could severely harm
the model’s accuracy. The complete code sequence is vital for the
classification and cannot be fully understood if a chunk is missing.
Therefore, we removed code sequences that exceeded 512 tokens,
ending with 115,600 samples.

Finally, we one-hot encode the labels (the CWEs and “Vulnera-
ble”). Li et al. compared a numeric encoding and a one-hot encoding

3CWEs: 113, 129, 134, 15, 190, 191, 197, 23, 319, 36, 369, 400, 470, 606, 643, 690, 78, 789,
80, 89 and 90.

https://samate.nist.gov/SRD/testsuite.php


A transformer-based IDE plugin for vulnerability detection ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 1: Overview of VDet for Java: summary of the development stages until the proof-of-concept.

and found the latter to yield higher accuracy at the cost of an in-
creased training time [16]. Lastly, we split the dataset: we use 20%
of the data for testing and the remaining 80% for training. We use
the 20/80 ratio as it is empirically the best division [8].

3.2 Model development
Previous studies either performed binary classification or multi-
class classification, assuming classes were mutually exclusive. How-
ever, the dataset contains vulnerable and non-vulnerable code,
allowing the model to comprehend the difference between con-
structions and further differentiate between an actual threat and
a potential one. In addition, most real-word code files have more
than 1 type of CWE in its composition, so it is important to have a
model capable of identifying multiple labels at the same time.

Tokenization and encoding: The Hugging Face library4 provides
tokenizers for all their models, and JavaBERT is one of them. We
use JavaBERT Tokenizer to tokenize and encode all code samples
from the dataset. Tokenization ensures that the input tokens have
the proper length by truncating (if too long) or padding (if too short)
the sequence, adding [PAD] tokens when needed. The attention
mechanism of a transformer permits the model to ignore these spe-
cial tokens by analyzing the input ids and corresponding attention
mask - an array of 1s and 0s indicating which tokens are padding
and which are not. Despite not influencing evaluation measures,
like accuracy or f1-score, these tokens are still fully included in
all mathematical operations performed by the model, damaging
training and evaluation speed. We apply a Uniform Length Batch-
ing strategy that sorts the dataset by sequence length and groups
samples of similar sizes in batches of 32, reducing the number of
tokens by 66% and speeding up training by avoiding redundant
computations.

Classify any length sequences: BERT architectures consume 512
tokens max, but it is possible to overcome this limitation with
some workaround. Although it is not recommended to divide the
sequence into chunks of size 512, add padding and special characters
accordingly, and treat each fragment individually during training,
it is helpful when classifying longer files. Therefore, we applied
this technique to identify vulnerabilities in different sized files.

Model evaluation: For the evaluation of the model, we use the test
split of our dataset. For the model’s evaluation, we use our dataset’s
test split. As we are dealing with multi-label classification and the

4https://huggingface.co/

Table 2: Performance measures of our model.

Accuracy Precision* Recall* F1-Score* FNR** FPR**
0.989 0.95 0.93 0.94 0.071 0.009

* Weighted-averages, ** Mean values

number of samples per label differs, we calculate the weighted av-
erage values for precision, recall and f1-score. We further compute
each class’s False Negative and False Positive rates and calculate
their mean values. We highlight the model’s accuracy of 98.9%. The
results are summarized in Table 2.

3.3 IDE extension
We selected VS Code to implement the extension, as it is one of
the most widely used IDEs 5 and has good support for extension
development. In VS Code, the extensions are written mainly in
Javascript or Typescript. We develop our tool in the latter and we
use the Svelte6(a lightweight Javascript web framework) for the
interface. Since we use Hugging Face’s transformer library [22], we
developed a Flask7 server to connect both parties.

Our extension blends neatly into the environment, as illustrated
in Figure 2. It has two buttons, "Code Selection" and "Complete File",
each with its tooltip for user guidance. On the one hand, when the
extension is run for a specific code section defined by the user, the
results are presented by line interval. On the other hand, the results
are displayed method by method when analyzing the complete file.
There is also a progress bar for each label present, and its values
correspond to the probability of the labels obtained with the model
through classification. These outputs are straightforward, requiring
minimal security background and making the extension accessible
to most developers.

Scan options: “Code Selection” analyzes a section highlighted by
the user in the active text editor. We extract the text from the active
selection and pass it to the server for classification, using the line
intervals as keys for the selected code. "Complete File" analyzes the
complete active file. We extract method names and bodies from the
file and hand these data to the server, with the names acting as keys
for the method statements. Although the first option allows users
to locate vulnerabilities with more precision and faster, it is not
the recommended strategy because it is highly dependent on the
5https://pypl.github.io/IDE.html
6https://svelte.dev/
7https://flask.palletsprojects.com/en/2.1.x/
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user’s ability to select an appropriate code section. The complete
file analysis will likely be more accurate as the extension performs
a method-level classification, eliminating the chances of letting a
critical code section out of the scan.

Execution Experiment: We performed an experiment to provide
a notion of the performance of the execution time of VDet. For
that, we select the shortest file and the lengthiest file in our testing
dataset, both vulnerable with CWE-400. The former is 40 lines in
size and the latter 480 lines, each containing 508 and 3,567 tokens,
respectively.We executed VDet five times for each file and obtain an
average execution time of 3090ms for the shortest file and 9309ms
for the longest.

Figure 2: VDet for Java: example of the outputs of the exten-
sion when analyzing a code section.

Flask server as backend: We developed a server with two end-
points to bind the strategies (implemented in Python) to the VS
Code extension. For the code selection strategy, the /predict/section
endpoint accepts as input a code selection (with the code and the
matching line interval) and outputs the labels and probabilities ob-
tained from the model. The /predict/file endpoint expects an array
of methods (i.e., code and method name) and outputs the labels and
probabilities for each one.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we present VDet for Java, which, to the best of our
knowledge, is the first transformer-based VS Code extension for
vulnerability detection in Java code. The extension can detect up to
21 CWE types, as it incorporates a fine-tuned JavaBERT model for
multi-label classification. We trained the pre-trained model on a
custom dataset with 115,600 methods extracted from the Juliet Test
Suite. Our evaluation results indicate an accuracy of nearly 99%, a
precision of 95%, and a recall of 93%.

VDet for Java is a successful proof-of-concept extension that
provides developers with accurate and accessible vulnerability iden-
tifications. We view many potential directions for further improve-
ments. One is improving accuracy by training the model on more
data and testing it with non-synthetic samples. We can also com-
plement the identifications with a detailed description of the CWE
and potential fix suggestions for the vulnerability. We can expand
functionalities to enable the analysis of a project with multiple
files and the search for a specific CWE. It is also possible to have

faster predictions by optimizing the communication between the
extension and the Python-based server.
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